08. Sistema Cardiovascular

El sistema circulatorio, que transporta líquidos por todo el organismo, se compone de los sistemas cardiovascular y linfático. El corazón y los vasos sanguíneos componen la red de transporte de la sangre, o sistema cardiovascular, a través del cual el corazón bombea la sangre por todo el vasto sistema de vasos sanguíneos del cuerpo. La sangre lleva nutrientes, oxígeno y productos de desecho hacia y desde las células.

Circuitos vasculares

El corazón se compone de dos bombas musculares que, aunque adyacentes, actúan en serie y dividen la circulación en dos partes: las circulaciones o circuitos pulmonar y sistémico (fig. 1-22 A y B). El ventrículo derecho del corazón impulsa la sangre pobre en oxígeno que procede de la circulación sistémica y la lleva a los pulmones a través de las arterias pulmonares. El dióxido de carbono se intercambia por oxígeno en los capilares pulmonares, y luego la sangre rica en oxígeno vuelve por las venas pulmonares al atrio (aurícula) izquierdo del corazón. Este circuito, desde el ventrículo derecho a través de los pulmones hasta el atrio izquierdo, es la circulación pulmonar. El ventrículo izquierdo impulsa la sangre rica en oxígeno, que vuelve al corazón desde la circulación pulmonar, a través del sistema arterial (la aorta y sus ramas), con intercambio de oxígeno y nutrientes por dióxido de carbono en los capilares del resto del cuerpo. La sangre pobre en oxígeno vuelve al atrio derecho del corazón por las venas sistémicas (tributarias de las venas cavas superior e inferior). Este circuito desde el ventrículo izquierdo al atrio derecho es la circulación sistémica.

La circulación sistémica consiste en realidad en muchos circuitos en paralelo que sirven a las distintas regiones y/o sistemas orgánicos del cuerpo (fig. 1-22 C).

Fig. 1-22

Fig. 1-22. La circulación. A) Ilustración esquemática de la disposición anatómica de las dos bombas musculares (corazón derecho e izquierdo) que impulsan la circulación pulmonar y sistémica. B) Ilustración esquemática de la circulación del cuerpo, con el corazón derecho e izquierdo representados como dos bombas en serie. La circulación pulmonar y la sistémica son en realidad componentes en serie en un circuito continuo. C) Esquema más detallado que muestra que la circulación sistémica consiste en varios circuitos paralelos que sirven a los distintos órganos y regiones del cuerpo.

Vasos sanguíneos

Hay tres clases de vasos sanguíneos: arterias, venas y capilares (fig. 1-23). La sangre, a alta presión, sale del corazón y se distribuye por todo el cuerpo mediante un sistema ramificado de arterias de paredes gruesas. Los vasos de distribución finales, o arteriolas, aportan la sangre rica en oxígeno a los capilares. Estos forman un lecho capilar, en el cual se produce el intercambio de oxígeno, nutrientes, productos de desecho y otras sustancias con el líquido extracelular. La sangre del lecho capilar pasa a vénulas de paredes delgadas, semejantes a capilares amplios. Las vénulas drenan en pequeñas venas que desembocan en otras mayores. Las venas de mayor calibre, las venas cavas superior e inferior, llevan la sangre pobre en oxígeno al corazón.

Fig. 1-23

Fig. 1-23. Estructura de los vasos sanguíneos. Las paredes de la mayoría de los vasos sanguíneos tienen tres capas concéntricas de tejido, llamadas túnicas. Con menos músculo, las paredes de las venas son más delgadas en comparación con las arterias, y tienen una amplia luz que normalmente aparece aplanada en las secciones de tejidos.

La mayoría de los vasos del sistema circulatorio tiene tres capas o túnicas:

  • Túnica íntima, un revestimiento interno compuesto por una sola capa de células epiteliales extremadamente aplanadas, o endotelio, que reciben soporte de un delicado tejido conectivo. Los capilares se componen sólo de esta túnica, además de una membrana basal de soporte en los capilares sanguíneos.
  • Túnica media, una capa media compuesta principalmente por músculo liso.
  • Túnica adventicia, una capa o lámina más externa de tejido conectivo.

La túnica media es la más variable. Las arterias, las venas y los conductos linfáticos se distinguen por el grosor de esta capa en relación con el diámetro de la luz, así como por su organización y, en el caso de las arterias, por la presencia de cantidades variables de fibras elásticas.

Arterias

Las arterias son vasos sanguíneos que transportan la sangre a una presión relativamente elevada (en comparación con las venas correspondientes), desde el corazón, y la distribuyen por todo el organismo (fig. 1-24 A). La sangre pasa a través de arterias de calibre decreciente. Los diferentes tipos de arterias se distinguen entre sí por su tamaño global, por las cantidades relativas de tejido elástico o muscular en la túnica media (fig. 1-23), por el grosor de sus paredes con respecto a la luz, y por su función. El tamaño y el tipo de las arterias son un continuo; es decir, se observa un cambio gradual de las características morfológicas de un tipo a otro. Hay tres tipos de arterias:

  • Las grandes arterias elásticas (arterias de conducción) poseen numerosas láminas de fibras elásticas en sus paredes. Estas grandes arterias reciben inicialmente el gasto cardíaco. Su elasticidad les permite expandirse cuando reciben la sangre de los ventrículos, minimizar el cambio de presión y volver a su tamaño inicial entre las contracciones ventriculares, mientras continúan impulsando la sangre hacia las arterias de mediano calibre. Con ello se mantiene la presión en el sistema arterial entre las contracciones cardíacas (en un momento en que la presión intraventricular cae a cero). Globalmente, de este modo se minimiza el reflujo de la presión arterial mientras el corazón se contrae y se relaja. Ejemplos de grandes arterias elásticas son la aorta, las arterias que nacen del arco de la aorta (tronco braquiocefálico, subclavias, carótidas) y el tronco de la arteria pulmonar y sus ramas principales (fig. 1-24 A).
  • Las arterias musculares de calibre mediano (arterias de distribución) tienen paredes que principalmente constan de fibras musculares lisas dispuestas de forma circular. Su capacidad para disminuir de diámetro (vasoconstricción) les permite regular el flujo de sangre a las diferentes partes del organismo, según las circunstancias (ej. actividad, termorregulación). Las contracciones pulsátiles de sus paredes musculares (con independencia del calibre de la luz) disminuyen su calibre transitoria y rítmicamente en una secuencia progresiva, lo que impulsa y distribuye la sangre a las diversas partes del cuerpo. La mayoría de las arterias con denominación, incluidas las que se observan en las paredes corporales y en los miembros durante la disección, como la braquial o la femoral, son arterias musculares de calibre mediano.
  • Las arterias de calibre pequeño y las arteriolas son relativamente estrechas y tienen unas gruesas paredes musculares. El grado de repleción de los lechos capilares y el nivel de tensión arterial dentro del sistema vascular se regulan principalmente por el tono (firmeza) del músculo liso de las paredes arteriolares. Si el tono se halla por encima de lo normal, hay hipertensión (presión arterial alta). Las arterias pequeñas no suelen tener una denominación especial ni se identifican específicamente en la disección; las arteriolas sólo pueden observarse con medios de aumento.

Fig. 1-24

Fig. 1-24. Porción sistémica del sistema cardiovascular. Las arterias y las venas que se muestran en la ilustración transportan sangre oxigenada desde el corazón hacia los lechos capilares sistémicos y devuelven sangre pobre en oxígeno desde los lechos capilares hasta el corazón, respectivamente, constituyendo la circulación sistémica. Aunque normalmente se representan y consideran como vasos únicos, como aquí, las venas profundas de los miembros normalmente se presentan como pares de venas satélites.

Las anastomosis (comunicaciones) entre diversas ramas de una arteria proporcionan numerosas posibles desviaciones del flujo sanguíneo si la vía habitual está obstruida por una compresión debida a la posición de una articulación, por un proceso patológico o por una ligadura quirúrgica. Si un conducto principal está ocluido, generalmente los conductos alternativos de menor calibre pueden aumentar de tamaño tras un cierto período, lo que permite una circulación colateral o una vía alternativa que irriga las estructuras distales al bloqueo. Sin embargo, las vías colaterales requieren tiempo para abrirse adecuadamente, y no suelen ser suficientes para compensar una oclusión súbita o una ligadura.

Sin embargo, hay áreas donde la circulación colateral no existe, o es insuficiente para reemplazar al conducto principal. Las arterias que no se anastomosan con las adyacentes son arterias terminales verdaderas (anatómicamente). La oclusión de una arteria terminal interrumpe el flujo sanguíneo a la estructura o segmento de un órgano que irriga esa arteria. Por ejemplo, la retina está irrigada por arterias terminales verdaderas, cuya obstrucción causa ceguera. Las arterias terminales funcionales (con anastomosis ineficaces) no son arterias terminales verdaderas, e irrigan segmentos del cerebro, el hígado, el riñón, el bazo y los intestinos; también pueden existir en el corazón.

Venas

Las venas generalmente devuelven la sangre pobre en oxígeno desde los lechos capilares al corazón, lo que les confiere su aspecto de color azul oscuro (fig. 1-24 B). Las grandes venas pulmonares son atípicas al llevar sangre rica en oxígeno desde los pulmones al corazón. Debido a que la presión sanguínea es menor en el sistema venoso, sus paredes (específicamente la túnica media) son más delgadas en comparación con las de las arterias acompañantes (fig. 1-23). Normalmente las venas no pulsan, ni tampoco emiten un chorro de sangre cuando se seccionan. Hay tres tipos de venas:

  • Las vénulas son las venas de menor tamaño. Las vénulas drenan los lechos capilares y se unen con otras similares para constituir las venas pequeñas. Para observarlas es necesario emplear medios de aumento. Las venas pequeñas son tributarias de venas mayores, que se unen para formar plexos venosos (red venosa), como el arco venoso dorsal del pie (fig. 1-24 B). Las venas pequeñas no reciben denominaciones específicas.
  • Las venas medias drenan los plexos venosos y acompañan a las arterias de mediano calibre. En los miembros, y en algunos otros lugares donde el flujo de sangre resulta dificultado por la acción de la gravedad, las venas medias poseen válvulas. Las válvulas venosas son cúspides (colgajos pasivos) de endotelio con senos valvulares similares a copas que se llenan desde arriba. Cuando están llenas, las cúspides valvulares ocluyen la luz del vaso, impidiendo el reflujo de sangre en sentido distal, haciendo el flujo unidireccional (hacia el corazón, pero no en sentido inverso; fig. 1-26). El mecanismo valvular también divide las columnas de sangre venosa en segmentos más cortos, reduciendo la presión retrógrada. Ambos efectos hacen que sea más fácil para la bomba muscular venosa superar la fuerza de gravedad para regresar la sangre al corazón. Como ejemplos de venas medias se incluyen las venas superficiales que tienen denominación (venas cefálica y basílica del miembro superior y venas safenas mayor y menor del miembro inferior), y las venas que reciben el mismo nombre que las arterias a las que acompañan (fig. 1-24 B).
  • Las venas grandes poseen anchos fascículos longitudinales de músculo liso y una túnica adventicia bien desarrollada. Un ejemplo es la vena cava superior.

Las venas son más abundantes que las arterias. Aunque sus paredes son más delgadas, su diámetro suele ser mayor que el de las arterias acompañantes. Las paredes delgadas de las venas les permiten tener una gran capacidad de expansión, lo que utilizan cuando el retorno de sangre al corazón queda dificultado por compresión o presiones internas (ej. tras inspirar profundamente y luego contener la respiración; es decir, en la maniobra de Valsalva).

Dado que las arterias y las venas forman un circuito, cabría esperar que la mitad del volumen sanguíneo se hallara en las arterias y la otra mitad en las venas. Sin embargo, debido al mayor diámetro de las venas y a su capacidad para expandirse, típicamente sólo el 20% de la sangre se encuentra en las arterias y el 80% en las venas.

Aunque en las ilustraciones para simplificar suelen dibujarse las venas como vasos únicos, en realidad generalmente son dobles o múltiples. Las que acompañan a las arterias profundas, o venas satélites, las rodean en una red irregular de ramificaciones (fig. 1-25). Esta disposición sirve como intercambio de calor a contracorriente: la sangre arterial caliente cede calor a la sangre venosa más fría cuando esta vuelve al corazón desde un miembro frío. Las venas satélites ocupan una fascia relativamente poco flexible, o vaina vascular, junto con la arteria que acompañan. A consecuencia de ello, quedan estiradas y aplanadas cuando la arteria se expande durante la contracción cardíaca, lo que ayuda a conducir la sangre hacia el corazón y constituye una bomba arteriovenosa.

Fig. 1-25

Fig. 1-25. Venas satélites. A pesar de que la mayoría de las venas del tronco discurren como largos vasos únicos, las venas de los miembros transcurren en forma de dos o más vasos más pequeños que acompañan a una arteria en una vaina vascular común.

Las venas sistémicas son más variables que las arterias, y las anastomosis venosas, o comunicaciones naturales directas o indirectas entre dos venas, son más frecuentes. La expansión centrífuga de los vientres musculares que se contraen en los miembros, limitados por la fascia profunda, comprime las venas y «ordeña» la sangre hacia el corazón, lo que constituye otro tipo de bomba venosa (musculovenosa) (fig. 1-26). Las válvulas venosas fragmentan la columna de sangre, lo que evita una presión excesiva en las partes más declives y permite que la sangre venosa fluya hacia el corazón. La congestión venosa que sufren los pies calientes y cansados después de un día fatigoso se alivia al descansarlos más altos que el tronco (del cuerpo), lo que ayuda al retorno de la sangre venosa al corazón.

Fig. 1-26

Fig. 1-26. Bomba musculovenosa. Las contracciones musculares en los miembros actúan conjuntamente con las válvulas venosas para movilizar la sangre hacia el corazón. La expansión hacia fuera de los vientres contraídos de los músculos está limitada por la fascia profunda y se convierte en una fuerza compresiva, impulsando la sangre en sentido contrario a la gravedad.

Capilares sanguíneos

Para que el oxígeno y los nutrientes que llegan por las arterias ejerzan su acción beneficiosa en las células que componen los tejidos del cuerpo, deben salir de los vasos que los transportan y penetrar en el espacio extravascular entre las células, es decir, el espacio extracelular (intercelular) donde viven las células.

Los capilares son simples tubos endoteliales que conectan los lados arterial y venoso de la circulación y permiten el intercambio de materiales con el líquido extracelular (LEC) o intersticial. Los capilares se disponen generalmente en forma de lechos capilares, o redes que conectan las arteriolas y las vénulas (fig. 1-23). La sangre entra en los lechos capilares procedente de las arteriolas, que controlan el flujo, y drena en las vénulas.

La presión hidrostática en las arteriolas impulsa la sangre al lecho capilar y a través de este, y también impulsa la salida de oxígeno, nutrientes y otros materiales celulares en el lado arterial de los capilares (corriente arriba) hacia los espacios extracelulares, lo que permite el intercambio con las células del tejido circundante. En cambio, las paredes capilares son relativamente impermeables a las proteínas del plasma. Corriente abajo, en el lado venoso del lecho capilar, la mayor parte de este LEC, que ahora contiene productos de desecho y dióxido de carbono, se reabsorbe hacia la sangre a consecuencia de la presión osmótica por las concentraciones más altas de proteínas dentro del capilar. Aunque está firmemente establecido, este principio se denomina hipótesis de Starling.

En algunas regiones, como en los dedos de las manos, existen conexiones directas entre las pequeñas arteriolas y las vénulas proximales al lecho capilar que irrigan y drenan. Estas comunicaciones, o anastomosis arteriovenosas, permiten que la sangre pase directamente desde el lado arterial de la circulación al venoso, sin transcurrir por los capilares. Los cortocircuitos arteriovenosos son numerosos en la piel, donde desempeñan un papel importante en la conservación del calor corporal.

En algunas situaciones, la sangre pasa a través de dos lechos capilares antes de llegar al corazón; un sistema venoso que une dos lechos capilares constituye un sistema venoso porta. El principal ejemplo es el del sistema venoso en el cual la sangre rica en nutrientes pasa desde los lechos capilares del tubo digestivo a los lechos capilares o sinusoides hepáticos, o sistema porta hepático (fig. 1-22 C).

Anterior
Siguiente